Elsevier is a global information analytics business that helps institutions and professionals advance healthcare, open science, and improve performance. Elsevier’s platforms allow researchers to find and analyse data from over 5000 publishers via Scopus (https://www.scopus.com); access the leading ebooks and journal articles published by Elsevier on ScienceDirect (https://www.sciencedirect.com/); manage their research and showcase their profile via free services such as Mendeley Data (http://data.mendeley.com), Hivebench (http://hivebench.com) and DataSearch (http://datasearch.elsevier.com). These platforms make data and content easier to search, access, analyse, and share.

In addition, data sharing and data transparency and reproducibility are very important for Elsevier. That’s because Elsevier plays a key role in supporting researchers who want to store, share, discover and reuse data. Elsevier does not perform any R&D activity, but they have a team of data analysts, who indeed use machine-learning algorithms in order to help researchers to find suitable papers to read, for example.

As data reliability is important, Elsevier would like to know whether someone else has reproduced the available materials data. Elsevier could use NOMAD data within their DataSearch platform (http://datasearch.elsevier.com) and researchers could benefit from having NOMAD data available. However, the DataSearch team has looked at the NOMAD infrastructure and felt that NOMAD did not lend itself to being ingested by DataSearch at this time, especially by Elsevier’s Push API. The majority of the ‘data’, consisting of some ~5.5 million calculations, did not have the required metadata.

Elsevier wish to support NOMAD by giving the centre as much visibility as possible. The company has already organised a Materials Today Webinar on “Harnessing the Potential of Open Data in Materials Science”, in which Dr. Luca Ghiringelli from NOMAD was invited to participate. Elsevier are also willing to propose NOMAD as one of their recommended data repositories, and at the same time would like to publish a special issue on machine learning in some of their computational physics journals, for example.